Measurement of hydrodynamic force generation by swimming dolphins using bubble DPIV.

نویسندگان

  • Frank E Fish
  • Paul Legac
  • Terrie M Williams
  • Timothy Wei
چکیده

Attempts to measure the propulsive forces produced by swimming dolphins have been limited. Previous uses of computational hydrodynamic models and gliding experiments have provided estimates of thrust production by dolphins, but these were indirect tests that relied on various assumptions. The thrust produced by two actively swimming bottlenose dolphins (Tursiops truncatus) was directly measured using digital particle image velocimetry (DPIV). For dolphins swimming in a large outdoor pool, the DPIV method used illuminated microbubbles that were generated in a narrow sheet from a finely porous hose and a compressed air source. The movement of the bubbles was tracked with a high-speed video camera. Dolphins swam at speeds of 0.7 to 3.4 m s(-1) within the bubble sheet oriented along the midsagittal plane of the animal. The wake of the dolphin was visualized as the microbubbles were displaced because of the action of the propulsive flukes and jet flow. The oscillations of the dolphin flukes were shown to generate strong vortices in the wake. Thrust production was measured from the vortex strength through the Kutta-Joukowski theorem of aerodynamics. The dolphins generated up to 700 N during small amplitude swimming and up to 1468 N during large amplitude starts. The results of this study demonstrated that bubble DPIV can be used effectively to measure the thrust produced by large-bodied dolphins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Hydrodynamics and Evolution: Function of Median Fins in Ray-finned Fishes.

The median fins of fishes consist of the dorsal, anal, and caudal fins and have long been thought to play an important role in generating locomotor force during both steady swimming and maneuvering. But the orientations and magnitudes of these forces, the mechanisms by which they are generated, and how fish modulate median fin forces have remained largely unknown until the recent advent of Digi...

متن کامل

Experimental Hydrodynamics of Fish Locomotion: Functional Insights from Wake Visualization1

SYNOPSIS. Despite enormous progress during the last twenty years in understanding the mechanistic basis of aquatic animal propulsion—a task involving the construction of a substantial data base on patterns of fin and body kinematics and locomotor muscle function—there remains a key area in which biologists have little information: the relationship between propulsor activity and water movement i...

متن کامل

Experimental hydrodynamics of fish locomotion: functional insights from wake visualization.

Despite enormous progress during the last twenty years in understanding the mechanistic basis of aquatic animal propulsion-a task involving the construction of a substantial data base on patterns of fin and body kinematics and locomotor muscle function-there remains a key area in which biologists have little information: the relationship between propulsor activity and water movement in the wake...

متن کامل

Hydrodynamic stability of swimming in ostraciid fishes: role of the carapace in the smooth trunkfish Lactophrys triqueter (Teleostei: Ostraciidae).

The hydrodynamic bases for the stability of locomotory motions in fishes are poorly understood, even for those fishes, such as the rigid-bodied smooth trunkfish Lactophrys triqueter, that exhibit unusually small amplitude recoil movements during rectilinear swimming. We have studied the role played by the bony carapace of the smooth trunkfish in generating trimming forces that self-correct for ...

متن کامل

Modeling and Optimization of Nano-bubble Generation Process Using Response Surface Methodology

In this paper, size distribution of nano-bubbles was measured by the reliable and fast method of laser diffraction technique. Nano-bubbles were produced using a nano-bubble generator designed and made based on hydrodynamic cavitation phenomenon in Venturi tubes. A Central Composite Design with Response Surface Methodology was used to conduct a five factor, five level factorial experimental desi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 217 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2014